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Abstract

Pointwise matching (PM) and integral projection (IP) methods are two widely used techniques to extend the classical

weak formulations to include non-conforming grids. We present spectral element formulations on polynomial (p-type)

and geometric (h-type) non-conforming grids using both the PM (also known as the Constrained Approximation) and

IP (also known as the Mortar Element) methods. We systematically compare the convergence characteristics of PM and

IP methods for diffusion, convection, and convection–diffusion equations. Consistency errors due to the non-conform-

ing formulations of the diffusion equation result in convergence problems for the PM method using the maximum rule.

Both non-conforming formulations for the unsteady convection operator result in eigenvalue spectrum with positive

real values, causing convergence problems due to the consistency errors. However, small ‘‘physical’’ diffusion in the con-

vection–diffusion equation eliminates these problems, resulting in spectral convergence for both methods. Encouraged

by this, we present spectral element formulations for incompressible Navier–Stokes equations using PM and IP meth-

ods on p-type and h-type non-conforming grids, and demonstrate spectral convergence for unsteady and steady test

cases. Results for two-dimensional lid-driven cavity flow at Re = 1000 are also presented.
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1. Introduction

Spectral element methods (SEM) are high-order domain decomposition methods [14,18,19] that combine

the competitive advantages of low-order finite element (h-FEM) and high-order spectral methods. Finite

element methods are attractive because of their highly flexible domain decomposition capability [20]. Spec-
tral methods, on the other hand, are preferred because of their exponential convergence characteristics, and

the built-in p-refinement capability [6,10].

SEM are multi-element methods, and similar to the FEM, their weighted-residual-based implementa-

tions often utilize conforming elements. By conformity we mean matching of the collocation points (points

where the unknowns are calculated) at element interfaces (Fig. 1(a)). Conforming mesh usually results in

severe restrictions on mesh refinements. For example, localized refinements by increasing the polynomial

expansion order (p-refinements) often result in propagation of the high-order polynomial discretization

to the entire domain. Non-propagating mesh refinements by dividing large elements into smaller elements
(h-refinements) are not possible either, because no hanging vertices are allowed at the element interfaces.

Efficient discretization of complex engineering geometries and proper resolution of the fine scale physics

using spectral element methods require both h-type and p-type refinement techniques.

There are several ways to extend the classical conforming formulations to include non-conforming ele-

ments. One of the early methods is the Pointwise matching (also known as the Constrained Approximation)

Method (PMM) [7,24]. It regains the lost C0 continuity at the non-conforming interfaces by enforcing

pointwise projection of the unknowns. Another method is the integral projection (Mortar Element) Method

(IPM) [3,4,12,15]. In this method, C0 continuity is not regained, however the jump at the non-conforming
interfaces are minimized by enforcing a weighted-integral matching. Other methods that are utilized to han-

dle the non-conformities include Zanoli Iteration Method [8], Transition Element Method [11] and Finite

Element Tearing and Interconnecting Method [16].

In this paper, we study spectral element formulations for p-type and h-type non-conformities using the

PMM and IPM. The p-type non-conformities are observed at the interface between two geometrically

matching elements with different polynomial expansion orders. This results in non-matching collocation

points at the common interface, as shown in Fig. 1(b). The h-type non-conformities include an interface

of geometrically non-matching elements. For example, Fig. 1(c) shows the interface with a single hanging
vertex, which is also known as the ‘‘1-irregular interface’’. Such interfaces are popular because they provide

enough flexibility for most practical problems with minimum programming difficulty. PMM is the preferred

method in finite element community, whereas IPM is mostly used with spectral element formulations. The

literature studying these two methods together are very limited. In this paper, we present implementation

and applications of PMM and IPM for diffusion, convection, convection–diffusion, and incompressible

Navier–Stokes equations, and compare their performance on both h-type and p-type non-conforming

grids.
ca b

Fig. 1. Types of interfaces: (a) conforming, (b) p-type non-conforming, (c) h-type type non-conforming (thick lines in all four plots

show element boundaries and intersection of thin lines show collocation points).
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This paper is organized as follows. In Section 2, we present a review of the Galerkin spectral element

formulation, which is followed by detailed discussions of the PMM and IPM formulations for both p-type

and h-type non-conformities. In Sections 4 and 5, we present effects of non-conformities on the steady and

unsteady diffusion, convection, and convection–diffusion equations. In Section 6, solutions of the incom-

pressible Navier–Stokes test problems are presented. Finally, in Section 7, we summarize our findings
and conclude.
2. Conforming Galerkin spectral element formulation

We will consider PMM and IPM as extensions to the conforming spectral element methods. Therefore,

we start by summarizing the conforming Galerkin spectral element (GSE) formulation. Let us consider a

two-dimensional Poisson problem and study its GSE formulation step-by-step.
Step 1 – Strong formulation. Find h such that
�r2h ¼ f on X; ð1aÞ
h ¼ g on Cg; ð1bÞ
n � rh ¼ h on Ch; ð1cÞ
where X is the problem domain and C = Cg ¨ Ch is the boundary of X. The unit normal n, points outward

from boundary Ch, and f, g and h are known functions.

Step 2 – Weighted residual formulation. Define the residual of Eq. (1a) as
�r2h� f ¼ 0 ð2Þ
and force the approximate solution to satisfy the residual equation in a weighted integral sense
Z
X
ð�r2~h� f Þw dX ¼ 0; ð3Þ
where the approximate solution ~h and the weight function w belong to the appropriate space of piecewise

polynomials.
Step 3 – Weak formulation. Apply integration by parts to the first term of Eq. (3)
Z

X
r~h � rw dX ¼

Z
X
fw dXþ

I
Ch

hw ds. ð4Þ
Step 4 – Domain discretization. Divide domain X into subdomains (elements) Xe and apply the weak for-

mulation in each subdomain individually
Z
Xe
r~h

e � rwe dXe ¼
Z
Xe
f ewe dXe þ

I
Ce
h

hewe dse. ð5Þ
Step 5 – Element discretization. Discretize each element further by M · N collocation points and express

the discretized form of h as
~hðn; gÞ ¼
XN
m¼0

XM
n¼0

~h
e

mnl
M
m ðnÞlNn ðgÞ ¼

Xncp
j¼1

~h
e

jSjðn; gÞ; ð6Þ
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where ncp = (M + 1)(N + 1) is the number of collocation points in element e. n and g are the axes of the

two-dimensional master element. Sj is the two-dimensional shape function associated with point j, which

is the tensor product of one-dimensional Lagrange interpolants lMm and lNn defined on Gauss–Lobatto–

Legendre (GLL) collocation points. lMm and lNn are Mth- and Nth-order polynomials, respectively, and they

are defined as:
lMm ðnÞ ¼ � ð1� n2ÞP 0
MðnÞ

MðM þ 1ÞPMðnmÞðn� nmÞ
; m 2 ½0;M �; ð7Þ
where PM and P 0
M are the Mth-order Legendre polynomial and its derivative, respectively [14].

Step 6 – Weight function selection. In the Galerkin formulation weight function w is selected to be the

same as the shape functions used for the unknown
w ¼ Si; i 2 ½1; ncp�. ð8Þ

Step 7 – Elemental matrix form. Substitute Eqs. (6) and (8) into Eq. (5) to obtain
Z

Xe

Xncp
j¼1

~h
e

jrSj � rSi dX
e ¼

Z
Xe
f eSi dX

e þ
I
Ce
h

heSi dse; ð9Þ
which can be put into the following elemental matrix form:
½K�ef~hge ¼ f�f ge þ fQge ¼ ff ge; ð10Þ

where [K]e and {f}e are the elemental stiffness matrix and force vector, respectively.

Step 8 – Assembly. Elemental matrices for each element is assembled to form a global system of algebraic

equations.
½K� ¼
Xne
e¼1

½K�e; ff g ¼
Xne
e¼1

ff ge. ð11Þ
It is worth to note that the conformity between the element interfaces is implicitly used during the assembly

process, which needs a one-to-one matching between the unknowns of the elements sharing an interface

(Fig. 1(a)). The modified assembly process is required for non-conforming elements will be demonstrated

in the next section.
3. Formulations on non-conforming grids, PMM and IPM

In this section, we present the details of PMM and IPM algorithms. In the coming subsections, we dem-

onstrate the principles of both techniques on p-type and h-type non-conforming interfaces. The following

discussion is intended to be implementation oriented rather than being mathematically rigorous. Each

method is studied sequentially using step-by-step instructions, which enables a better comparison between

them.
3.1. Pointwise matching method (PMM)

PMM is a method where we regain the C0 continuity that is lost at the non-conforming interfaces. This is

done by a pointwise projection and matching of the unknowns of one face to the other. We will demon-

strate this method using the simple configuration given at Fig. 2, which shows a 3rd order element
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Fig. 2. An element with M = N = 3rd order expansion and ncp = 16 collocation points. Faces shared with five neighboring elements

are also shown. South interface has p-type, East and North interfaces have h-type non-conformities. West interface is conforming.

Points of the center element and the neighboring faces are shown with circles and squares, respectively.
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(M = N = 3) surrounded by five neighbors. Only the faces of the neighbors� that are shared with the middle

elements are shown. The formulation explained below is based on the work of Chang and Hsu [7].

Step 1 – Determine the non-conforming interfaces and type of non-conformities. In our example South

interface has p-type, East and North interfaces have h-type non-conformities. West interface is conforming.

Step 2 – Decide on active and passive faces. At the non-conforming interfaces collocation points of two

neighboring faces are not matching (circles are not matching with squares). Both sets of points cannot be
used in the assembly process. A decision should be made on which set of points to be used. These points will

be called active points and remaining set of points will be called passive points. Let us first concentrate on the

South interface where we have p-type non-conformity. There are two possibilities in determining the active/

passive faces. First one is known as the minimum rule: Face with lower expansion order is the active face.

The other possibility is the maximum rule which is just the opposite of the minimum rule. For this illustra-

tion maximum rule will be used. Now let us look at the East and North interfaces, where we have h-type

non-conformities. This time there is only one choice, which we call the long rule: Longer face is the active

face and two shorter faces are the passive faces. Later it will be clear why the other possibility, the short rule
is not preferred with PMM.

Step 3 – Generate the constrained element. Fig. 3(a) shows the original element whose (according to the

above discussion) South and North faces are passive. Fig. 3(b) shows the constrained element obtained by

replacing the points on the passive faces of the original element by the points of the active neighboring

faces. Deleted points of the original element (2, 3, 8, 9) are the passive points. By definition all the points

of the constrained element are the active points. These are the points that will go into the assembly process.
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Fig. 3. PMM: (a) original element with ncp = 16 and (b) constrained element with dncp ¼ 1̂8.
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Step 4 – Write the unknowns at the passive points in terms of the unknowns at the active points. This is the

key step which is different for each non-conforming technique. PMM is one of the easiest ones, in which we

enforce a projection of unknowns at the passive points onto the active faces. Let us concentrate on the

South face. We want to write the unknowns at the passive points 2 and 3 in terms of the unknowns at

the active points 1̂–1̂8. For this purpose, Eq. (6) can be used on the constrained element. For example,
at point 2 (~ is dropped for the sake of clarity),
h2 ¼
Xcncp
ĵ¼1̂

heĵSĵðn2; g2Þ. ð12Þ
Note that point 2 is on a face, hence two-dimensional shape functions reduce to one-dimensional Lagrange

interpolants. Using this fact, Eq. (12) can be simplified to
he2 ¼ he
1̂
l1̂ðn2Þ þ he

2̂
l2̂ðn2Þ þ he

3̂
l3̂ðn2Þ þ he

4̂
l4̂ðn2Þ þ he

5̂
l5̂ðn2Þ. ð13Þ
This is called the constraint approximation for the passive point 2. A similar equation can be written for

point 3, and together they can be expressed in the following vector equation:
h2
h3

� �e

¼ ½CS�e

h1̂
h2̂
h3̂
h4̂
h5̂

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e

¼
l1̂ðn2Þ l2̂ðn2Þ l3̂ðn2Þ l4̂ðn2Þ l5̂ðn2Þ
l1̂ðn3Þ l2̂ðn3Þ l3̂ðn3Þ l4̂ðn3Þ l5̂ðn3Þ

� �e
h1̂
h2̂
h3̂
h4̂
h5̂

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e

; ð14Þ
where CS is the conformity matrix for the South face. A similar equation can be written for the passive
points of the North face,
h8
h9

� �e

¼ ½CN�e

h8̂
h9̂
h1̂0
h1̂1
h1̂2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e

¼
l8̂ðn

�
8Þ l9̂ðn

�
8Þ l1̂0ðn

�
8Þ l1̂1ðn

�
8Þ l1̂2ðn

�
8Þ

l8̂ðn
�
9Þ l9̂ðn

�
9Þ l1̂0ðn

�
9Þ l1̂1ðn

�
9Þ l1̂2ðn

�
9Þ

� �e
h8̂
h9̂
h1̂0
h1̂1
h1̂2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e

; ð15Þ
where
n�8 ¼
n8 þ 1

2
; n�9 ¼

n9 þ 1

2

are used in order to project the coordinates of the North face of the original element (n) onto the neighbor-

ing face (n*) properly. It is also clear from this projection why the short rule is not used with PMM. Because
that would yield terms in CN like liðn�j Þ ði ¼ 7; 8; 9; 10; j ¼ 11; 12Þ which are not defined (li (i = 7, 8, 9, 10)

are defined only in 0 < n* < 1).

Now unknowns at all four passive points (2, 3, 8, 9) are expressed in terms of the unknowns at the active

points.

Step 5 – Setup the elemental conformity matrix. Note that there is one-to-one matching of many points of

the original and constrained elements. Using these matchings and the previously defined CS and CN, an ele-

mental conformity matrix can be assembled to relate the unknowns of the original element to the unknowns

of the constrained element.
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fhge ¼ ½C�efĥge; where ½C�e ¼

1

� � � � �
� � � � �

1 0

1

1

1

� � � � �
� � � � �

1

1

1

0 1

1

1

1

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775

ncp� ^ncp

ð16Þ
and fĥg represents the unknowns of the constrained element. As seen from this equation, elemental con-

formity matrices are very sparse. This is because only the face points are affected by the constraint func-

tions. Unity entries are due to one-to-one matching points of the original and constrained elements.

Non-unity entries coming from CS and CN are shown with dots.

Step 6 – Modified assembly process. After setting up the elemental conformity matrices for each element,
these can be used in the modified assembly
½K� ¼
Xne
e¼1

½C�eT½K�e½C�e; ff g ¼
Xne
e¼1

½C�eTff ge. ð17Þ
Here, it is very important to note that up to the assembly process having non-conformities does not make

any difference. Elemental stiffness matrices and force vectors are constructed using original elements as if

there were no non-conformities. Therefore, PMM requires very little programming and computational

overhead due to the non-conformities. The challenge is the design and efficient management of elemental
data, which is less organized compared to a conforming mesh.
3.2. Integral projection method (IPM)

Unlike PMM, IPM does not regain the lost C0 continuity at the non-conforming interfaces via pointwise

projection. Instead, it minimizes the jump across such interfaces in a weighted integral sense. Again we will

end up with elemental conformity matrices and use them to modify the assembly process. However, the

numerical values of these matrices and the way they are obtained are different. Following the formulation
given by Bernardi et al. [3,4], we demonstrate the details of IPM using the mesh configuration of Fig. 2.

Step 1 – Determine the non-conforming interfaces and type of non-conformities. Same as the first step of

PMM.
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Step 2 – Decide on active and passive faces. At p-type non-conforming South interface again there is the

freedom to choose either the minimum or the maximum rule. Let us again choose the maximum rule. At h-

type non-conforming East and North interfaces there are two possibilities, short and long rules. Here, the

short rule will be used, reasons of which will be explained later.

Step 3 – Generate the constrained element. Fig. 4(a) shows the original element. According to the selec-
tions made in the second step, its� South and East faces are passive. Fig. 4(b) shows the constrained element

obtained by replacing the points on the passive faces of the original element by the points of the active

neighboring faces. Therefore this time, passive points are 2, 3, 5, 6, and again all the points of the con-

strained element are active. In the following discussion, at a p-type non-conforming interface, expansion

orders of the passive and active faces will be denoted by N1 and N2, respectively. Therefore for the South

face of our example N1 = 3, N2 = 4. At an h-type interface, expansion order of the long face will be denoted

by N1 and expansion orders of the two small faces by N2 and N3. For our example�s, East face N1 = 3,

N2 = 3, N3 = 2.
Step 4 – Write the unknowns at the passive points in terms of the unknowns at the active points. This step is

different than the fourth step of PMM. Let us first work on the South face. We want to write the unknowns

at the passive points 2 and 3 in terms of the unknowns at the active points. This time the constraint func-

tions will not enforce a pointwise matching but rather a weaker matching. We will take a weighted line inte-

gral at the South face of the original element,
I1 ¼
I
1�4

hwi ds; ð18Þ
where wi is the weight function associated with the ith passive point. In order to get two equations for un-

knowns at the two passive points (2 and 3), two weight functions are necessary. They are usually selected to

be modified GLL-based Lagrange interpolants that are two order less than the order of the original face.
wi ¼ ð�1ÞN1�i L
0
N1
ðnÞ

ni � n
; i ¼ 1; . . . ;N 1 � 1. ð19Þ
Two orders less, because the end point conditions ðh1 ¼ h1̂; h4 ¼ h5̂Þ removes two degrees of freedom

from the constraint at each passive face. Using the discretized form of the unknown h from Eq. (6) (drop-

ping ~ for the sake of clarity), Eq. (18) becomes
I1 ¼
X4

j¼1

I
1�4

hjljwi ds. ð20Þ
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Fig. 4. IPM: (a) original element with ncp = 16 and (b) constrained element with ^ncp ¼ 1̂9.



308 C. Sert, A. Beskok / Journal of Computational Physics 211 (2006) 300–325
Note that the summation includes only the points of the South face. There will be no contribution from

other points because shape functions associated with those points have zero value at the South face.

Also note that two-dimensional shape functions reduce to one-dimensional Lagrange interpolants at

the faces. Now let us take a similar line integral but this time at the South face of the constrained

element
I2 ¼
X5̂

ĵ¼1̂

I
1̂�5̂

hĵlĵwi ds. ð21Þ
Constraint functions for IPM can be obtained by equating I1 and I2,
X4

j¼1

I
1�4

hjljwi ds ¼
X5̂

ĵ¼1̂

I
1̂�5̂

hĵlĵwi ds. ð22Þ
Using GLL quadrature for the integrals and the two end-point conditions, this system can be reduced to
½BS�
h2
h3

� �e

¼ ½P S�

h1̂
h2̂
h3̂
h4̂
h5̂

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e

)
h2
h3

� �e

¼ ½CS�

h1̂
h2̂
h3̂
h4̂
h5̂

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

e

; ð23Þ
which has the same form as Eq. (14) derived for PMM. Of course the entries of the conformity matrix [CS]

of the South face are different, and they depend on the order of the GLL quadrature used for the integrals,

I1 and I2. From Eq. (20), it can be seen that I1 includes polynomials of order (N1 + N1 � 2), which can be

calculated exactly with N1th-order GLL quadrature (Nth-order GLL quadrature can evaluate (2N � 1)th-

order polynomials exactly). Also using N1th-order quadrature yields a diagonal BS matrix, which eliminates

the matrix inversion of Eq. (23). I2, on the other hand, has polynomials of order (N1 + N2 � 2), which can

be calculated exactly using a GLL quadrature of order N = max(N1,N2).
East interface, which has h-type non-conformity, requires a similar procedure to calculate the confor-

mity matrix CE. Skipping the details [22], this time there are three line integrals. I1 is evaluated on the East

face of the original element. I2 and I3 are evaluated on the two small active neighboring faces. Constraint

functions necessary for the passive points 5 and 6, are then obtained by I1 = I2 + I3. As discussed for PMM,

special attention is necessary in the proper projection of coordinates at the active faces onto the passive

face, since they are not geometrically matching (see [3,22] for details). At this point one can understand

why the short formulation is not suitable for IPM. Short formulation for IPM would require the evaluation

of weight functions w based on short faces at the collocation points of a long face, which is cumbersome.
Steps 5 and 6 are identical to that of the PMM.

As demonstrated in the last two sections, formulation of PMM and IPM end up modifying the classical

Galerkin formulation in very similar ways. However, they do not always perform equally well. In the fol-

lowing sections, we will compare the convergence and eigenvalue characteristics of these two methods using

diffusion, convection, and convection–diffusion equations.
4. Diffusion equation

Consider the following two-dimensional steady diffusion equation with Dirichlet boundary conditions
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�r2h ¼ f on X 2 ½0; 1� � ½0; 1�; ð24aÞ
h ¼ hexact on C. ð24bÞ
The force function is selected such that the exact solution is
hexact ¼ sinð4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 2Þ2 þ ðy � 2Þ2

q
Þ. ð25Þ
We will solve this problem using two different meshes shown in Figs. 5(a) and (b).

4.1. Test 1: spectral convergence on a conforming mesh

First we will utilize a fully conforming mesh (shown in Fig. 5(a)) to demonstrate the spectral convergence

upon p-type refinement. Expansion orders of N = N1 = N2 will be used, where Ni denotes the expansion

order of the ith element in both x- and y-directions. The thick line in Fig. 6 shows the convergence plot
(maximum error vs. expansion order) for this test. For sufficiently smooth problems, such as given in this

case, SEM results in exponential decay of discretization errors by increasing the elemental expansion order

N (straight line on a log–lin plot) [6].

4.2. Test 2: convergence on a p-type non-conforming mesh

In this test, convergence of PMM and IPM is compared on a p-type non-conforming mesh. The same

two-element mesh is used, but this time a p-type non-conformity is introduced by varying the expansion
orders in the y-direction. The expansion order in the x-direction for both elements are kept constant at

16. This is a high enough value to ensure that the errors are dominated by the discretization in the y-direc-

tion, along which the non-conformity lies.
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Fig. 5. Various meshes with geometrically conforming and non-conforming elements.
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Fig. 6 shows the maximum errors obtained by different combinations of N1y and N2y. Combinations of

PMM, IPM, and minimum, maximum rules are shown as separate plots. The thick lines of each plot are

identical and correspond to the conforming case. Let us study these plots by concentrating on the conver-

gence curve for a specific N1y, say 12. In all plots, two different regions can be identified: N2y < 12 and
N2y > 12. In the first region N2y < N1y, which means that the second element is not resolved as good as

the first element, hence, the maximum error occurs in the second element. In this region, the maximum

error decreases asN2y is increased. In the second region, N2y is larger thanN1y and the maximum error shifts

to the first element. The maximum error is expected to remain constant since the expansion order in the first

element is kept constant (at 12 for the case we are discussing now). To summarize, we expect to see an expo-

nential decay in the region N2y < N1y and a constant error for N2y > N1y. The deviations from this behavior,

as seen in Fig. 6, is due to the consistency errors introduced by the non-conforming formulations [2].

The minimum and maximum rules behave similar for IPM (minimum rule performing slightly better),
and follow the expected behavior as seen from Figs. 6(c) and (d). For PMM, results for the minimum rule

(Fig. 6(a)) are very similar to those of IPM. However, PMM with maximum rule exhibit large consistency

errors and looses convergence. These results can be seen as generalizations of the polynomial order incom-

patibility problem studied in [2], where the relative importance of consistency and approximation errors is

analyzed for pointwise matching and integral matching approaches. The authors in [2] have shown that the
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maximum rule, when used with PMM (Fig. 6(b)), results in unbounded consistency errors for certain com-

binations of N1y and N2y.

4.3. Test 3: convergence on an h-type non-conforming mesh

This is a test similar to the previous one, but this time a three-element, h-type non-conforming mesh,

shown in Fig. 5(b), will be used. Similar to the previous test, expansion orders in the x-direction are kept

constant at 16, while expansion orders in the y-direction are varied.

Fig. 7 shows the convergence curves for this test. For h-type non-conformities, instead of maximum and

minimum rules, we use long rule with PMM and short rule with IPM. Let us consider the curve obtained

with IPM for N1y = 16. Up to N2y = 12, the error decays exponentially. Maximum error occurs inside one

of the small elements. After N2y > 12 maximum error shifts to the big element, i.e. element 1, and the error

stays constant because the expansion order of element 1 is kept constant. Similar behavior is obtained for
other values of N1y. Curves for PMM deviate from the straight line of spectral convergence in the interval

N2y < N1y. Compared to IPM, PMM requires higher expansion orders to get the same level of error. For

N2y > N1y errors for PMM stay constant with values slightly lower than the corresponding IPM cases.

However, in a physical problem it is unlikely to employ small elements with expansion orders (N2y,N3y)

larger than that of the large element (N1y). Due to the switch between the long and short rules between

the PMM and IPM, these two methods do not use the same number of degrees of freedom. Therefore,

one needs to be careful comparing errors obtained by PMM and IPM on h-type non-conforming meshes.

4.4. Test 4: eigenvalue analysis of the unsteady diffusion equation

In this section, we will analyze the eigenvalue spectrum of the unsteady diffusion equation using two-

element p-type, and three-element h-type non-conforming meshes. Unsteady diffusion equation is given by
Fig. 7.
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After a semi-discrete formulation, the global discrete system of _h ¼ M�1Dh is obtained, which can be put

into the following eigenvalue problem:
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ðM�1D� kIÞ/ ¼ 0; ð27Þ

where k and / are the eigenvalues and corresponding eigenvectors, respectively. M and D are the mass and

diffusion matrices. All the boundaries are taken to be Dirichlet type.

Fig. 8 shows the growth of maximum eigenvalues with the expansion order. Fig. 8(a) is for a conforming

mesh. The straight line has a slope of two, suggesting that the maximum eigenvalue increases linearly with

the square of the expansion order, i.e. jkjmax � OðN 2Þ. This trend agrees with that of the global spectral
methods [12]. Similar trends are obtained for p-type and h-type non-conforming meshes. In Fig. 8(c), eigen-

values for IPM are slightly higher than those of PMM, because IPM uses the short rule resulting in more

degrees of freedom. Note that for every case shown in Fig. 8, all the eigenvalues are real and negative.

Therefore, non-conformities do not bring any instability problems for the diffusion operator, if one uses

absolutely stable implicit schemes, such as Crank–Nicolson.
5. Convection equation

In this section, we will study the unsteady linear convection equation, starting with the eigenvalue spec-

tra obtained with different kinds of non-conforming interfaces and formulations.

5.1. Test 5a: eigenvalue analysis of the unsteady convection equation on a p-type non-conforming mesh

In this test, we will analyze the eigenvalue spectrum of the convection operator using the four-element

mesh shown in Fig. 5(c). Unsteady convection equation is given by
oh
ot

þ u � rh ¼ 0; ð28Þ
where u is a two-dimensional velocity field. For simplicity, we take the velocity field to be in the x-direction
with a magnitude of 1. Dirichlet conditions on the top and bottom boundaries, and periodic conditions on

the left and right boundaries are used. After a semi-discrete formulation, Eq. (28) gives the global discrete

system of _h ¼ �M�1Ah, which can be put into the following eigenvalue problem
N
5
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ð�M�1A� kIÞ/ ¼ 0; ð29Þ

where A is the convection matrix.

Eigenvalue spectra for Test 5a are shown in Fig. 9. Identical results are obtained for PMM and IPM, so

this figure will be referred without making a distinction between PMM and IPM. As seen from Fig. 9(a),

conforming configurations result in all imaginary eigenvalues, as expected for the convection equation. In

case of p-type non-conformities, both minimum and maximum rules result in eigenvalues with symmetric
real parts. Real parts of the eigenvalues are larger for the maximum rule. We want to note that our eigen-

value results are similar to those presented in [21], where Ronquist studied the stability characteristics of

convection dominated flows on grids with p-type non-conforming elements. However, he used PMM

and IPM only with the minimum and maximum rules, respectively. Therefore, the differences in the eigen-

value spectrum were attributed to the PMM and IPM techniques. However, our results for p-type non-

conforming elements show that these differences are due to use of the minimum and maximum rules,

and they are induced by the ‘‘consistency errors’’. In Section 5.5, we will show that these consistency errors

result in stability problems in solution of time-dependent problems, even if one utilizes a fully coupled
space–time formulation.

We will continue by solving Test 5a using various orders of expansions to understand the relationship

between the maximum real part of the eigenvalues Re(k)max, and the expansion order N. (This is similar

to Test 4 that was performed for the diffusion operator.) Results are shown in Fig. 10. Behaviors of the

minimum and maximum rules are similar. Re(k)max increases with increased expansion order N, making

the problem numerically more difficult to solve.

5.2. Test 5b: eigenvalue analysis of the unsteady convection equation on an h-type non-conforming mesh

The previous test considered p-type non-conformities. In this test, we study the eigenvalue spectrum of

the convection operator using the four-element, h-type non-conforming mesh shown in Fig. 5(d). Similar to

the previous case, top and bottom boundaries are Dirichlet type and right and left boundaries are periodic.
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Eigenvalue spectra for Test 5b are shown in Fig. 11. Unlike p-type non-conformities, results for PMM

and IPM are different, because the former uses the long rule while the latter uses the short rule. Eigenvalues

obtained with IPM are spread more on the real axis with larger real parts. Fig. 12 shows the relationship
between the maximum real part of the eigenvalues Re(k)max, and the expansion order N. Behavior of PMM

is similar to the one obtained for the p-type refinement (Fig. 10). Re(k)max for IPM increases more rapidly

than that of the PMM.

5.3. Test 6: unsteady convection equation on a conforming mesh

In the last two sections, we studied the eigenvalue spectrum of the convection operator for non-conform-

ing interfaces. Now we will study the convergence characteristics of the pure convection equation, focusing
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on the effects of the positive real eigenvalues on time integration. Consider the following two-dimensional

unsteady convection–diffusion equation
oh
ot

� ar2hþ oh
ox

¼ f on X 2 ½0; 1� � ½0; 1�. ð30Þ
For a zero force function, and the initial condition of
hðx; y; 0Þ ¼ sinð2pxÞ sinðpyÞ;

the analytical solution is given by
hexact ¼ sinð2pðx� tÞÞ sinðpyÞe�5p2at; ð31Þ

where a is the constant diffusivity. To obtain an unsteady convection equation, we take a = 0. Solution for

this problem is a modified sine wave traveling in the positive x-direction. We use the four-element meshes

shown in Figs. 5(c) and (d). On the top and bottom boundaries, exact solution is specified as Dirichlet

boundary conditions. Left and right boundaries are periodic. Time integration is done by the Crank–Nicol-
son scheme, with a time step of 0.0002.

Let us start solving this problem with a fully conforming four-element mesh, using same expansion order

in all elements and in both x and y-directions. Note that we are solving a pure convection problem with zero

diffusivity. Fig. 13(a) shows the time history of errors for various expansion orders. Error levels decrease

exponentially as expansion order is increased from N = 4 to N = 8. Small time step of 0.0002 results in

errors dominated by space discretization, which accumulate slightly as time progresses. All three cases

are stable.

5.4. Test 7: unsteady convection equation on a p-type non-conforming mesh

Let us repeat the previous test with expansion orders of N1 = N2 = N, N3 = N4 = N + 2 so that there

will be p-type non-conforming interfaces. PMM with the maximum rule will be used. Note that IPM

gives the same results as PMM and minimum rule differs only slightly from the maximum rule (see Figs.

9 and 10). Fig. 13(b) shows the time history of errors for various expansion orders. Only the case for

N = 4 runs successfully for six cycles of the sine wave. Cases for N = 6 and N = 8 becomes unstable after
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couple of cycles. Eigenvalues with positive real parts, introduced by the non-conforming formulation, are

responsible for these blow-ups. The rate at which the error increases for N = 8 is larger than that of for

N = 6. These error growth rates are directly related to the maximum positive real part of the eigenvalues

(see Fig. 10).

5.5. Test 8: unsteady convection equation on an h-type non-conforming mesh

We will repeat this test using the h-type non-conforming, four-element mesh shown in Fig. 5(d). Same

expansion order will be used in all elements. Figs. 13(c) and (d) show the time history of the errors for var-

ious expansion orders, for PMM and IPM, respectively. PMM results are very similar to the results of the

previous test shown in Figs. 13(c) and (d). This is expected because of the similarity between the maximum

eigenvalue results shown in Figs. 10 and 12. For IPM, instabilities setup earlier and errors increase with

higher slopes. This behavior can be explained by Fig. 12, which shows higher positive eigenvalues for
IPM compared to PMM. Even the case N = 4 is giving problems with IPM.

In the last three tests (6, 7, 8), a semi-discrete formulation with Crank–Nicolson time integration is used.

Crank–Nicolson scheme is an absolutely stable scheme, with the stability region covering the whole 2nd

and 3rd quadrants of the eigen-plane. But non-conforming formulations produce eigenvalues with positive

real parts, which are responsible for the blow-ups. Additional consistency errors due to the non-conforming

formulations are causing convergence problems. To validate further that this is a consistency problem, we

repeated all three test cases using a fully coupled space–time formulation (instead of the previously used

semi-discrete formulation). Similar to the spatial discretization, Lagrange interpolation functions based
on GLL points are used for time discretization. Although the coupled formulation practically has no time

stability restrictions, we obtained the same results. Therefore, we conclude that for pure convection prob-

lems, consistency errors due to the non-conforming formulations result in positive real eigenvalues, which

makes these formulations impractical for pure convection problems.

Ronquist investigated convection-dominated viscous flows using both the pointwise matching and inte-

gral projection methods on p-type non-conforming grids [21]. He examined numerical stability of non-

conforming spectral elements using convective and skew-symmetric forms of the convection operator.

For convection-dominated viscous flows, he has shown different convergence characteristics based on
the flow direction (whether the flow is from low-order to high-order elements, or vice versa), spatial and

temporal (explicit versus implicit) discretization of the convection operator, and the use of PMM versus

IPM. His study also included the eigenvalue spectra for various forms of the convection operator for

non-conforming elements, which are qualitatively similar to our results presented in this section. Despite

these limitations, Ronquist was able to obtain spectral convergence for Navier–Stokes equations using im-

plicit time-stepping schemes, while explicit schemes were not quite successful even for Re 6 200 flows [21].

Based on this experience, Ronquist concluded that implicit time-integration for Navier–Stokes equations

on non-conforming elements are imperative for stability of PMM or IPM. We must reemphasize that
numerical instabilities for pure convection equation will be observed regardless of the time integration

scheme, as demonstrated in this section. Nevertheless, Ronquist�s work has shown that physical diffusion

due to the viscous terms may lead to stable Navier–Stokes solutions. Based on this, we first investigate the

convergence characteristics of convection–diffusion equation for non-conforming formulations, and then

analyze several Navier–Stokes test cases.

5.6. Test 9: convergence of the unsteady convection–diffusion equation

In the previous sections, we considered the pure convection problem. Now we will study the generalized

convection–diffusion equation given by Eq. (30) with a non-zero diffusivity. Same traveling wave problem

will be solved, exact solution of which is given by Eq. (31). Diffusivity is taken to be a = 0.01. The four-
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element meshes shown in Figs. 5(c) and (d) with periodic side boundaries will be used to study fully con-

forming, p-type non-conforming and h-type non-conforming cases.

For the conforming case, all four elements have expansion orders N. For the p-type non-conforming

case, elements 1 and 2 have expansion orders N, and elements 3 and 4 have expansion orders N + 2.

For the h-type non-conforming case, all elements have expansion order Nx = N in the x-direction, elements
1 and 4 have expansion orders Ny = N, and elements 2 and 3 have expansion orders Ny = 2 in the y-direc-

tion. Convergence results are shown in Fig. 14. As given by Eq. (31), the analytical solution decreases expo-

nentially by time, and so is the error. In order to circumvent this, we normalized the error by dividing it

with e�5p2at. Crank–Nicolson scheme with a time step of 0.0002 is used for time integration. All four cases

shown in Fig. 14 ran successfully for 10 cycles (first 5 is plotted), providing spectral convergence upon

increasing the expansion order. The added diffusion is enough to shift all the eigenvalues to the left

eigen-plane (in other words, enough to suppress the consistency errors), resulting in successful solutions.

For the p-type non-conforming cases (b and c), maximum rule results in larger errors, although it uses more
degrees of freedom. The difference between minimum and maximum rule is more apparent for lower expan-

sion orders, especially with PMM. For the h-type non-conforming case PMM and IPM provides very sim-

ilar results.
6. Solutions of the incompressible Navier–Stokes

Incompressible fluid flow is governed by the Navier–Stokes equations (written using the primitive
variables)
ov

ot
þ ðv � rÞv� mr2vþrp ¼ f; ð32aÞ

r � v ¼ 0; ð32bÞ
where v is the velocity vector, p is the pressure, m is the kinematic viscosity and f is the body force vector.

For simplicity, we assume that the density is equal to 1. We solved these equations using the Uzawa method
[14,22] on a semi-staggered mesh, where velocities and pressures are calculated at Gauss–Lobatto–Legendre

and Gauss–Lobatto points, respectively [7,22]. Unsteady problems are formulated using the semi-discrete

approach, with fully implicit Crank–Nicolson time integration. Two test problems, oscillatory flow in a

two-dimensional channel and steady Kovasznay flow, are studied to compare the convergence characteris-

tics of PMM and IPM for both p-type and h-type of non-conformities. Finally, two-dimensional lid-driven

cavity flow at Re = 1000 is investigated, and the results are verified with the data published in the literature.
6.1. Oscillatory flow in a two-dimensional channel

Consider the flow between two parallel plates, driven harmonically in time with a non-dimensional pres-

sure gradient of the following form:
op
ox

¼ �Ae�it; ð33Þ
where A is the pressure gradient amplitude and i ¼
ffiffiffiffiffiffiffi
�1

p
. Velocity profile for this flow is given by [17]
uðy; tÞ ¼ Real iAe�it 1�
cos ðiþ1Þffiffi

2
p

b
y

� �
cos ðiþ1Þ

2
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Fig. 14. Time evolution of error for unsteady convection–diffusion equation with a = 0.01 (Test 9). Using: (a) conforming mesh, (b) p-
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error is normalized by dividing it with exp(�5p2at) to eliminate error reduction due to the diffusion of the signal.
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where y is the cross channel distance normalized by the channel height. For time periodic flows, Womersley
number (b) acts like a dynamic Reynolds number and determines the shape of the velocity profile. Fig. 15

shows the velocity profiles at various instances during a cycle for b = 1 and b = 10 flows. Quasi-steady flow

behavior is observed for b = 1, while the Richardson�s annular effect is present for b = 10. Here, we will

study this problem for a Womersley number of 10, using the following three strategies
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(a) Conforming. Four-element mesh shown in Fig. 5(c) is used (with a different range in the y-axis,

�0.5 < y < 0.5). In the y-direction, same expansion order Ny is used for all elements. Since the flow

is not changing in the x-direction, a low-order expansion Nx = 3 is used for all elements. This is also

true for the following cases.

(b) p-type non-conforming. Same four-element mesh is used. Elements 1 and 4 have expansion orders Ny,
and elements 2 and 3 have expansion orders Ny + 2.

(c) h-type non-conforming. Geometrically non-conforming four-element mesh shown in Fig. 5(d) is used.

Elements 2 and 3 have expansion orders Ny, and elements 1 and 4 have expansion orders Ny + 4.

Exact solution at time zero is provided as the initial condition and the Navier–Stokes equations are inte-

grated in time for 10 cycles. All cases run without any stability problems, with the errors shown in Fig. 16.

Spectral convergence is obtained for all cases. For the p-type non-conforming cases, minimum rule per-

forms better than the maximum rule, despite its use of lesser degrees of freedom than that of the maximum
rule. These findings are in agreement with the results of the diffusion operator study given previously (in

Fig. 6). For the h-type non-conforming case, PMM performs better than IPM for a given expansion order.

This is expected because PMM utilizes more degrees of freedom, due to its use of the short rule.

6.2. Kovasznay flow

The streamlines of Kovasznay flow resemble low Reynolds number flow past an array of cylinders as

shown in Fig. 17(a). It is an analytical solution to the Navier–Stokes equations, given by
Fig. 15

within
u ¼ 1� ekx cosð2pyÞ;
v ¼ k=2pekx sinð2pyÞ;
p ¼ 0.5ð1� ekxÞ;

ð35Þ
where k = 0.5/m � (0.25/m2 + 4p2)0.5 and m = 1/40. Kovasznay flow is a popular test problem for high-order

methods [13,14]. Similar to the previous test problem, we will perform conforming, p-type non-conforming

and h-type non-conforming solutions, as follows:

(a) Conforming. Eight element mesh shown in Fig. 17(b) is used. Same expansion order N is used in all

elements.

(b) p-type non-conforming. Same eight element mesh is used. Elements 1, 3, 5, 7 has expansion orders N,

whereas elements 2, 4, 6, 8 has expansion orders N � 2. Only the maximum rule is tested.

(c) h-type non-conforming. Six element mesh shown in Fig. 17(c) is used. All elements has expansion order

N, except elements 3 and 6 has expansion orders N + 4 in the y-direction.
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Analytical solution is specified at all boundaries. Fig. 18 shows convergence results obtained from the

steady Navier–Stokes solver. This time, maximum error is plotted against the square root of total number

of degrees of freedom (ndf), including both velocity and pressure. Non-conforming solutions use multiple

expansion order, therefore in order to provide a fair comparison of different solutions on a single plot ndf is

used instead of N. Taking the square root of ndf ensures that the exponential convergence appears as a

straight line on a log–lin graph. As seen from the figure, all three strategies result in spectral convergence.

Similar to the previous case, when we use maximum rule with p-type non-conformity IPM performs better

than PMM. For h-type non-conformity case, PMM and IPM results are practically the same.
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6.3. Lid-driven cavity flow

Lid-driven cavity problem has a simple geometry and it is a classical Navier–Stokes test case. The prob-

lem geometry and boundary conditions are such that the top wall is moving in the tangential direction with

a velocity of u = �1, while all other walls are stationary. Although this problem does not have a closed form

analytical solution, it has been studied extensively, and many highly accurate benchmark results are avail-

able [1,5,23]. The challenging aspect of this problem is the singularities at top corners, which make the

problem difficult for high-order formulations.
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The purpose of this study is twofolds: First we want to demonstrate that we can simultaneously utilize

h- and p-type non-conformities for a realistic test-case. Second, we want to demonstrate that the consis-

tency problems reported for pure convection equation are not observed for Navier–Stokes problems at

relatively high Reynolds numbers.

We performed a series of simulations for Reynolds number 1000 flow, utilizing the mesh shown in
Fig. 19. The mesh is symmetric with respect to x = 0.5 line. The figure shows elements with bold lines

and the collocation points are shown in the left half of the figure by the intersection of thin lines. The right

half of the figure shows polynomial expansions used in x- and y-directions. We have employed various lev-

els of h- and p-type non-conformities, as shown in the figure. The top-right and top-left corners utilize

6 · 12 elements. Unlike other researchers, who employed ‘‘singularity substraction’’ methods to achieve

spectral convergence [1,5,23], we deliberately under-resolved the corner-singularity regions of the flow.

Our objective here is to demonstrate the ‘‘scientific accuracy’’ (maximum error of 1%) of our solution, since

spectral convergence can not be obtained without subtracting the corner singularities [1,5,23]. In Fig. 20, we
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line. The results are compared with the spectral solutions in [1,5], and finite difference solutions in [9] at Re = 1000.
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present the streamwise (u) and cross-flow (v) velocity profiles at x = 0.5 and y = 0.5 lines, respectively. The

results are obtained by solution of the steady Navier–Stokes equations using the Uzawa algorithm. The

non-linear terms require iterative solutions, where 60 iterations were necessary to reduce the velocity and

pressure residuals below 1 · 10�12. In Fig. 20, we also present comparisons of our solution with spectral

solutions of [1,5], who employed ‘‘singularity substraction’’, and the finite difference solution of [9]. Our
results in the figure successfully match the published data. The collocation points used in our simulations

match the collocation points used in [1,5] only at (x, y) = (0.5, 0.5). Therefore, we could do point-wise com-

parisons only at (0.5, 0.5), where we match the spectral solutions with singularity subtraction up to four

significant digits using the current mesh resolution (Fig. 19). We believe this test case successfully demon-

strates that the consistency problems for pure convection equation are not observed for the Navier–Stokes

equations, at least up to Re = 1000.
7. Summary and conclusions

In this paper, we presented a comparative study of the pointwise matching and integral projection meth-

ods for both p- and h-type non-conforming grids. Although PMM and IPM are the two most popular non-

conforming formulations, existing literature mostly concentrates on the PMM or IPM individually, and do

not include the vast number of possibilities and rules that can be applied to handle hp non-conforming ele-

ments. In our study, we presented the PMM and IPM algorithms with step-by-step implementation details.

Particularly, we considered the minimum-, maximum-, short- and long-rules, and addressed their conver-
gence characteristics and eigenvalue spectra for steady and unsteady diffusion, convection, and convection/

diffusion equations.

For several cases, non-conforming formulations resulted in consistency errors, in agreement with the

previous work [2,21]. Solution of the diffusion equation exhibited polynomial order incompatibility for

PMM with the maximum rule on p-type non-conformities. PMM with the minimum rule and IPM with

both minimum and maximum rules provided acceptable results. For h-type non-conformities, PMM exhib-

ited loss of spectral convergence, and it did not perform as well as the IPM.

For the unsteady convection equation, PMM and IPM with p-type non-conformities have identical
eigenvalue spectra. Consistency errors for p-type non-conformities shift some of the eigenvalues into the

positive real eigenplane. We correctly attributed this shift to the use of maximum or minimum rules,

and not to the use of PMM or IPM (Fig. 9). The situation is similar for h-type non-conformities, where

positive real components of the eigenvalues are larger for IPM (due to the use of the short-rule) compared

to the PMM (which uses the long-rule). Positive real components of the eigenvalues result in numerical

instabilities for solution of the unsteady convection equation using non-conforming grids. Coupled

space–time formulations were also used to correctly identify the source of these problems to be the consis-

tency errors coming from the non-conforming formulations.
Consistency errors were not observed for the convection–diffusion problems. Small ‘‘physical’’ diffusion

seemed to eliminate the convergence problems induced by the positive real components of the eigenvalues,

observed for the unsteady convection operator using non-conforming grids. Encouraged by this result, we

studied the steady and unsteady incompressible Navier–Stokes equations using the Uzawa technique. Spec-

tral convergence was demonstrated utilizing both PMM and IPM on test problems with known analytical

solutions. Although the maximum rule used more degrees of freedom, it did not perform as well as the min-

imum rule. The PMM and IPM provided comparable results, with no distinct advantage of one over the

other.
Finally, elimination of the consistency errors with small physical diffusion is an indication that the

consistency errors may become important for convection dominated flows with diminishing viscosity.

This may induce a maximum Reynolds number limit for the simulations. Although our results for the
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two-dimensional lid-driven cavity problem at Re = 1000 did not exhibit any limitations, we plan to explore

and report such limitations in future studies.
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